見る/開く

B
u
ll
.F
a
c
.Ag
,
.
rS
a
g
aU
n
i
v
.N
o
.78:57~65 (1995)
BEARINGCAPACITYANDDEFLECTIONOFLATERALLY
LOADEDFLEXIBLEPILES
V.V.R
.N.SASTRY,TatsuyaKOUMOTO,F
.J
.MANOPPO
andJ
.E
.R.SUMAMPOUW
(
L
a
b
o
r
a
t
o
r
yo
fC
o
n
s
t
r
u
c
t
i
o
nE
n
g
i
n
e
e
r
i
n
g
)
R
e
c
e
i
;
廿e
dNo世e
m
b
e
;
γ18
,1994
Summary
巴p
i
l
ec
a
p
a
c
i
t
y,
t
h
eb
e
n
d
i
n
gmomentv
a
r
i
a
t
i
o
nw
i
t
hd
e
p
t
ha
n
dt
h
eh
o
r
i
z
o
n
t
a
ld
i
s
p
l
a
c
巴m
e
n
t
s
Th
巴l
o
a
dl
e
v
e
lo
fi
n
s
t
r
u
m
e
n
t
e
dv
e
r
t
i
c
a
ls
i
n
g
l
ef
l
e
x
i
b
l
em
o
d
e
lp
i
l
e
si
nl
o
o
s
es
a
n
d,u
n
d
e
rl
a
t
e
r
a
l
a
tt
h
l
o
a
d
sh
a
v
eb
e
e
ni
n
v
e
s
t
i
g
a
t
e
d
. Ther
e
s
u
l
t
so
ft
h
e
s
el
o
a
dt
e
s
t
sa
r
ecomparedw
i
t
ht
h
e
o
r
e
t
i
c
a
l
e
s
t
i
m
a
t
e
sb
a
s
e
do
nt
h
ec
o
n
c
e
p
to
ft
h
ee
f
f
e
c
t
i
v
eemb
日d
mentd
e
p
t
ho
fe
q
u
i
v
a
l
e
n
tr
i
g
i
dp
i
l
e
sf
o
r
u
l
t
i
m
a
t
ea
n
de
l
a
s
t
i
cc
a
s
e
s
.R
e
a
s
o
n
a
b
l巴 a
g
r
e
e
m
e
n
th
a
sb
e
e
nf
o
u
n
db
e
t
w巴e
nt
h
eo
b
s
e
r
v
e
da
n
dt
h
e
p
r
e
d
i
c
t
e
db
e
h
a
v
i
o
u
ro
ff
l
e
x
i
b
l
ep
i
l
e
s
.
d
i
n
gmoment,d
e
f
l
e
c
t
i
o
n,f
l
e
x
i
b
l
ep
i
l
e,i
n
s
t
r
u
m
e
n
t
a
t
i
o
n,l
a
t
e
r
a
l
KeyWo
r
d
s
:b
e
a
r
i
n
gc
a
p
a
c
i
t
y,加n
l
o
a
d,m
o
d
e
lt
e
s
t,s
a
n
d
INTRODUCTION
E
x
t
e
n
s
i
v
es
t
u
d
i
e
sont
h
eb
e
h
a
v
i
o
u
ro
fr
i
g
i
dp
i
l
e
s(Kr
>0
.
1
)u
n
d
e
rl
a
t
e
r
a
ll
o
a
d
shave
i
n
c
hHansen1
,P
o
u
l
o
sandDavis
9,
MeyerhofandS
a
s
t
r
y5,6). Theses
t
u
d
i
e
s
beenr
e
p
o
r
t
e
d(Br
havel
e
dt
oc
l
e
a
rd
e
s
i
g
nc
o
n
c
e
p
t
sa
sf
a
ra
sr
i
g
i
dp
i
l
e
sa
r
econcemed. However,i
np
r
a
c
t
i
c
e,
mosto
ft
h
ep
r
o
t
o
t
y
p
ep
i
l
e
sa
r
ef
l
e
x
i
b
l
e(Kr<0
.
0
1
)whichbendu
n
d
e
rt
h
ea
c
t
i
o
no
fextemal
f
o
r
c
e
s
. Attemptshavebeenmader
e
c
e
n
t
l
yt
or
e
l
a
t
et
h
eb
e
h
a
v
i
o
u
ro
ff
l
e
x
i
b
l
ep
i
l
e
si
nterms
o
fe
q
u
i
v
a
l
e
n
tr
i
g
i
dp
i
l
e
sbyi
n
t
r
o
d
u
c
i
n
gt
h
ec
o
n
c
e
p
to
fe
f
f
e
c
t
i
v
ed
e
p
t
hf
o
rb
o
t
hu
l
t
i
m
a
t
eand
8
e
l
a
s
t
i
cs
t
a
g
e
so
fl
o
a
d
i
n
g (Meyerhofe
ta1 • , S
a
s
t
r
yandMeyerhof
,
O
l,
" Y
a
l
c
i
nandMeyerh
o
f
1
3
).
1
nc
o
n
t
i
n
u
a
t
i
o
no
ft
h
ep
r
e
v
i
o
u
ss
t
u
d
i
e
s,
t
h
ep
r
e
s
e
n
ti
n
v
e
s
t
i
g
a
t
i
o
nc
o
n
s
i
s
t
so
fi
n
s
t
r
u
m
e
n
t
edmodelf
l
e
x
i
b
l
ep
i
l
e
sb
u
r
i
e
di
nhomogeneousl
o
o
s
esandands
u
b
j
e
c
t
e
dt
ol
a
t
e
r
a
ll
o
a
d
s
.
Theb
e
n
d
i
n
gmomentsi
nt
h
ep
i
l
es
h
a
f
t,t
h
et
o
t
a
ll
o
a
dandt
h
el
o
a
dl
e
v
e
ld
i
s
p
l
a
c
e
m
e
n
t
s
undereachl
o
a
di
n
c
r
e
m
e
n
twer
・
er
e
c
o
r
d
e
d
. Theo
b
s
e
r
v
a
t
i
o
n
swerea
n
a
l
y
z
e
dt
ov
e
r
i
f
yt
h
e
a
p
p
l
i
c
a
b
i
l
i
t
yo
ft
h
ee
f
f
e
c
t
i
v
ed
e
p
t
hc
o
n
c
e
p
t
st
op
r
e
d
i
c
tt
h
ep
i
l
ec
a
p
a
c
i
t
y,maximumb
e
n
d
i
n
g
momentandh
o
r
i
z
o
n
t
a
ld
e
f
l
e
c
t
i
o
n
so
ff
l
e
x
i
b
l
ep
i
l
e
sunderl
a
t
e
r
a
ll
o
a
d
s
.
B
u
ll
.F
a
c
.A
g
r
.,S
a
g呂 U
n
i
v
.N
o
.7
8(
19
9
5
)
5
8
1、a
b
l
e1 P
h
y
s
i
c
a
lP
r
o
p
e
r
t
i
e
so
fP
i
l
e
s
R
e
l
a
t
i
v
eS
t
i
f
f
n
e
s
so
fPi
Ie1
王γ(x1
0
-4)
D
e
p
t
h
A
l
u
m
i
n
i
u
m
A
c
r
y
l
i
c
H
a
r
dR
u
b
b
e
r
E
s
(
M
P
a
)
D(mm) 。/ち
E
p
=
6
.
3x1
0
'
M
P
a
E
p
=
0
.
3x1
0
'
M
P
a E
p
=
0
.
0
0
3
X1
0
'
M
P
a
1
6
0
0
.
0
7
7 1
6,3
4
0
.
0 A
1
*
1
01
.7 P
l*
R
1
*
1
0
1
4
1
.8 P
2
3
0
.
4
4R
2
3
2
0
0
.
1
5
4
5
1
0
.
6 A
2
*
2
0
6
4
0
0
.
1
9
7
1
8
.
6 A3
1
.2 P
3
*
4
0
N
o
t
e
:Ep=Moduluso
fe
l
a
s
t
i
c
i
t
yo
fp
i
l
e
;B=16mm(
P
i
l
ed
i
a
m
e
t
e
r
)
;
Es=W
e
i
g
h
t
e
da
v
e
r
a
g
eh
o
r
i
z
o
n
t
a
ls
e
c
a
n
tm
o
d
u
l
u
so
fs
o
i
li
nd
e
p
t
hD
;
*=P
i
l
en
u
m
b
e
r
彬
キ
地
MODELTESTS
S
o
i
lData
DryToyourasandu
s
e
di
nt
h
et
e
s
t
swasu
n
i
f
o
r
m
l
ygradedhavinge
f
f
e
c
t
i
v
es
i
z
e 0
.
1
2
7
. Theminimumandmaximumv
o
i
dr
a
t
i
o
so
ft
h
esand
m mandu
n
i
f
o
r
m
i
t
yc
o
e
f
f
i
c
i
e
n
tニ1.6
e
s
p
e
c
t
i
v
e
l
y
. Thea
n
g
l
eo
fi
n
t
e
r
n
a
lfrictionφdeterminedfromd
i
r
e
c
t
were0
.
6
1and0
.
9
6,r
3
s
h
e
a
rt
e
s
t
sperformeda
t ap
o
r
o
s
i
t
yofη=4
7 % was31
"(
Koumoto andKaku). The
,backc
a
l
c
u
l
a
t
e
dfromr
i
g
i
dp
i
l
et
e
s
tr
e
s
u
l
t
s,
was
h
o
r
i
z
o
n
t
a
ls
e
c
a
n
tmodulusEso
ft
h
esand
s
e
e
nt
ovaryl
i
n
e
a
r
l
yfromz
e
r
oa
tgroundl
e
v
e
lt
o3
6
5kPaa
tad
e
p
t
ho
f3
8
0mm.
P
i
l
eData
c
r
y
l
i
candhardr
u
b
b
e
rp
i
p
e
shavingo
u
t
s
i
d
e
Themodelp
i
l
e
sweremadeo
faluminium,a
d
i
a
m
e
t
e
rBo
fabout1
6m mandw
a
l
lt
h
i
c
k
n
e
s
so
f1
4mm. Thep
i
l
e
swereb
u
r
i
e
dt
oad
e
p
t
h
2
0 m m and 6
4
0 m mi
nsand s
ot
h
a
t D/B v
a
l
u
e
s were 1
0,2
0 and 4
0,
Do
f1
6
0 m m,3
r
e
s
p
e
c
t
i
v
e
l
y
. Ther
e
l
a
t
i
v
ep
i
l
es
t
i
f
f
n
e
s
sKrrangedfrom 10- 1 -10- 5 • Eachp
i
l
ewas i
n
守
strumentedwithw
i
r
er
e
s
i
s
t
a
n
c
es
t
r
a
i
ngagess
t
a
g
g
e
r
e
da
t as
p
a
c
i
n
go
f4
0m m ont
h
e
o
u
t
s
i
d
es
k
i
no
ft
h
ep
i
p
e
sf
o
rt
h
emeasuremento
ft
h
ebendingmoments. Thegageswere
p
r
o
t
e
c
t
e
d by e
n
c
l
o
s
i
n
gt
h
ep
i
l
ei
np
o
l
y
o
l
e
f
i
nt
u
b
i
n
g
. The d
e
t
a
i
l
so
fp
i
l
e
st
e
s
t
e
da
r
e
セe
di
nTable1
.
summar
LOOSESAND
φ 3
1
0
田
1←
1む
STRAIN /
,,1 '
l
/
1
1
1
:
1
_
.
.
d1
GAGESι--- しJ
'
→ B←
F
i
g
.1 E
x
p
e
r
i
m
e
n
t
a
lS
e
t
u
p
1
1
一兆一一
S
A
S
T
R
Y• K
O
C
l
ねT
O• l
'
v
L
¥
N
O
P
P
O・
S
l
l
l
i
¥
l
l
P
O
l
:
W
:BEARlr
.
:GCAPACITYANDDEFLECTIONOFLATERALLYLOADEDFLEXIBLEP
I
L
E
S 5
9
T
e
s
tD
e
t
a
i
l
s
Sandwasr
a
i
n
e
dfromac
o
n
s
t
a
n
th
e
i
g
h
to
f5
0
0m mi
ns
q
u
a
r
es
t
e
e
lbox4
8
0m mx4
8
0
3
m mi
ns
e
c
t
i
o
nand8
0
0m mdeeps
ot
h
a
tt
h
eplacementu
n
i
tw
e
i
g
h
twas1
3
.
7
2kN/m. 京市en
h
ep
i
l
ewasp
l
a
c
e
di
np
o
s
i
t
i
o
nandt
h
er
a
i
n
i
n
g
t
h
es
o
i
ls
u
r
f
a
c
er
e
a
c
h
e
dt
h
er
e
q
u
i
r
e
dl
e
v
e
l,t
c
o
n
t
i
n
u
e
dt
i
l
lt
h
et
a
n
kwasf
u
l.
l Theh
o
r
i
z
o
n
t
a
l
l
o
a
dwasa
p
p
l
i
e
di
n1
0
1
2i
n
c
r
e
m
e
n
t
se
a
c
h
e
p
e
n
d
i
n
gont
h
ee
s
t
i
m
a
t
e
dp
i
l
ec
a
p
a
c
i
t
y,a
p
p
l
i
e
da
tah
e
i
g
h
to
f2
5
.
4m m
b
e
i
n
g1
1
0N,d
. Undere
achl
o
a
di
n
c
r
e
m
e
n
t,
t
h
es
t
r
a
i
nmeasurements
abovegroundl
e
v
e
la
sshowni
nF
i
g
.1
a
tt
h
egagel
o
c
a
t
i
o
n
swerer
e
c
o
r
d
e
dbyu
s
i
n
gLoggermateDL1
2
0
0,w
h
i
l
et
h
el
o
a
dl
e
v
e
l
o
a
di
n
c
r
e
m
e
n
tl
a
s
t
e
dt
i
l
lt
h
er
a
t
eo
ft
h
e
d
e
f
l
e
c
t
i
o
n
sweremeasuredbyaLVDT‘ Eachl
l
yz
e
r
oandt
h
egageo
u
t
p
u
t
swerec
o
n
s
t
a
n
t
.
h
o
r
i
z
o
n
t
a
ls
e
t
t
l
e
m
e
n
twasp
r
a
c
t
i
c
aI
1
0
0
60
(Z)
ロ ALUMINIUM(
A
I,A2
,
A
3
)
番
号 A
CRYLlC(pl
,
P
2
,
P
3
)
繍 R
U
l
l
B
E
R(
R
l,
R
2
)
相'何回hvd
刊品︿ハ︾白山嗣 KF
脳同開館。
(Z} ぬ︿。、同
40
A
3
口
50
P
3<
1
>
A
2
口
。
P
l
1
5
0
1
0
0
DEFLECTION (m冊 )
l
申
告
50
co持IPUTEDCAPACITY(N)
F
i
g
.
2 T
y
p
i
c
a
lL
o
a
dD
e
f
l
e
c
t
i
o
nC
u
r
v
e
s
F
i
g
.3 C
o
m
p
u
t
e
da
n
dO
b
s
e
r
v
e
dC
a
p
a
c
i
t
i
e
so
f
t
h
eP
i
l
e
s
.
n
N
M
ω
7
A
守
悶
N
0
出円
M
I
D
G
RU
M円
EU
2
.
0
0.
1
(自)同国ド弘同信
申.
3
P
I
L
E
:A2
D=0
.
3
2田
P
I
L
E
:P
2
D
=
0
.
3
2m
(
a
)
O,4l_~一一」ー」ー」ー」ー」ー」
F
i
g
.4
a V
a
r
i
a
t
i
o
no
fB
e
n
d
i
n
gMomentW
i
t
h
D
e
p
t
ha
n
dL
o
a
df
o
rP
i
l
eA2
(
b
)
0
.
4
F
i
g
.4
b V
a
r
i
a
t
i
o
no
fB
e
n
d
i
n
gMomentW
i
t
h
D
e
p
t
ha
n
dL
o
a
df
o
rP
i
l
eP
2
.
B
u
ll
.F
a
c
.Ag
r
.
.S
a
g
aU
n
i
v
.N
o
.78 (1995)
6
0
(E.Z)HZ国交)翠白同旬、門戸島国語。ハ}
T
e
s
tRe
白u
l
t
s
2
0
Load d
e
f
l
e
c
t
i
o
nc
u
r
v
e
so
ft
h
ep
i
l
e
s
ロ ALUM1N1UM(Al,A2,心) I
/十
骨
ACRYLlC(
P
l,
P
2,
P
3
)
/
J
t
e
s
t
e
dweref
o
u
n
dt
ob
es
i
m
i
l
a
rt
ot
h
o
s
e
r
e
p
o
r
t
e
de
a
r
l
i
e
r from s
i
m
i
l
a
rt
e
s
t
sw
i
t
h
l
a
r
g
ei
n
s
t
r
u
m
e
n
t
e
dp
i
l
ei
n homogeneous
A3
ロ
s
o
i
l
s(
S
a
s
t
r
yandM
e
y
e
r
h
o
f
l
0
)w
i
t
hsome
1
0
t
y
p
i
c
a
lr
e
s
u
l
t
sp
r
e
s
e
n
t
e
di
nF
i
g
.2
. The
f
a
i
l
u
r
el
o
a
dwasd
e
t
e
r
m
i
n
e
dbye
x
t
e
n
d
i
n
g
t
h
el
i
n
e
a
rp
o
r
t
i
o
no
ft
h
el
o
a
dd
e
f
l
e
c
t
i
o
n
C
T
P
3
h
e
c
u
r
v
ea
ss
u
g
g
e
s
t
e
dbyT
e
r
z
a
g
h
i12 andt
.
p
i
l
ec
a
p
a
c
i
t
i
e
sa
r
ep
r
e
s
e
n
t
e
di
nF
i
g
.3
-OBt
1
0
2
0
T
y
p
i
c
a
l r
e
s
u
l
t
s o
f measured bending
OBSERVED MOMENT (N.m)
momentv
a
r
i
a
t
i
o
nw
i
t
hd
e
p
t
handl
o
a
dl
e
v
e
l F
i
g
.5 C
o
m
p
u
t
巴d a
n
dO
b
s
e
r
v
巴d M
aximum
r
ep
r
e
s
e
n
t
e
di
nF
i
g
s
.4
f
o
rp
i
l
e
sA2 andP2 a
B
e
n
d
i
n
gM
o
m
e
n
t
s
(
a
)and4
(
b
),r
e
s
p
e
c
t
i
v
e
l
yw
h
i
l
et
h
eo
b
s
e
r
v
e
d
maximumb
e
n
d
i
n
gmomentsi
nt
h
ep
i
l
e
sa
r
ep
r
e
s
e
n
t
e
di
nF
i
g
.5
. Themeasuredd
e
p
t
h
so
f
t
h
ep
o
i
n
t
swheret
h
emaximumb
e
n
d
i
n
gmomentswereo
b
s
e
r
v
e
da
r
ep
r
e
s
e
n
t
e
di
nF
i
g
.6
T
y
p
i
c
a
lv
a
l
u
e
so
fo
b
s
e
r
v
e
dl
o
a
dl
e
v
e
lh
o
r
i
z
o
n
t
a
ld
e
f
l
e
c
t
i
o
n
sf
o
rp
i
l
e
s P2 and A3 a
r
e
p
r
e
s
e
n
t
e
di
nF
i
g
.7
(
a
)and7
(
b
),r
e
s
p
e
c
t
i
v
e
l
y
“
ANALYSISOFRESULTS
BearingC
a
p
a
c
i
t
y
Thee
f
f
e
c
t
i
v
ed
e
p
t
hc
o
n
c
e
p
ta
p
p
l
i
e
dt
of
l
e
x
i
b
l
ep
i
l
e
su
n
d
e
ru
l
t
i
m
a
t
ea
sw
e
l
la
se
l
a
s
t
i
c
s
t
a
g
e
so
fl
o
a
d
i
n
gi
ss
c
h
e
m
a
t
i
c
a
l
l
yr
e
p
r
e
s
e
n
t
e
di
nF
i
g
.8
. Thef
l
e
x
i
b
i
l
i
t
yo
ft
h
ep
i
l
ei
s
9
measuredbyr
e
l
a
t
i
v
es
t
i
f
f
n
e
s
sf
a
c
t
o
rKrd
e
f
i
n
e
dbyP
o
u
l
o
sandDavis
[1] Kr=Eplp/EsD4
v
e
r
a
g
eh
o
r
i
z
o
n
t
a
ls
e
c
a
n
tmodulus
whereE
p
l
p
=
f
l
e
x
u
r
a
lr
i
g
i
d
i
t
yo
ft
h
ep
i
l
e,Es=weighteda
i
nembedmentd
e
p
t
hD
. Thep
i
l
eb
e
h
a
v
e
sa
sar
i
g
i
de
l
e
m
e
n
twhenKr>
0
.
1whereasi
t
behavesa
saf
l
e
x
i
b
l
ememberwhenKr<0
.
0
1w
i
t
ht
r
a
n
s
i
t
i
o
n
a
lb
e
h
a
v
i
o
u
rbetweent
h
eabove
~ 0
.
8
9
9
0,
1994)
o PREVlOUSTESTS 8=73m m(SASTRY& MEYERHOF 1
~ 0
.
6
~
•
PRESENTTESTS
Theory
一一
0.
4
型8(SAND)
0.414(CIAY)
@
0.
4
@
@
@
忌
臨
LA
TlVES
TlF
FNESSFACTOR (Kr)
F
i
g
.
6 R
e
l
a
t
i
o
nB
e
t
w
巴e
nDm/Da
n
dK
r
1
S
A
S
T
R
¥・K
O
u
l
l
O
T
O・
l
'
v
1
A
i
:O
P
P
O
'S
D
I
A
M
P
O
C
W
:B
E
A
R
I
N
GC
A
P
A
C
I
T
YANDD
E
F
L
E
C
T
I
O
NO
FL
A
T
E
R
A
L
L
YL
O
A
D
E
DF
L
E
X
I
B
L
EP
I
L
E
S 6
E
Q
.[!3J
一 世 -
一ーか-
1
0
一一〈トー
一~
P
O
U
L
O
S
&
D
A
V
I
S
(
1
9
8
0
)
T
E
S
T
S
CHANG(
1
9
3
7
)
5
1
5
。
{E自 ) 戸 z
oロハ}同叫民同ぬ
8
工
ー←-
T
E
S
T
S
CHANG(
1
9
3
7
)
〆
0
/:
:
f
Y
'
臣
I
.
.A
S
T
'
I
C
U
l
.
.
T
l
総"
1
藍
4
。
(
b
)
40
LOAD Q(N)
F
i
g
.8 S
c
h
e
m
a
t
i
cD
i
a
g
r
a
mo
fF
l
e
x
i
b
l
ea
n
dE
q
u
i
v
a
l
e
n
tR
i
g
i
dP
i
l
e
s
F
i
g
.7 R
e
l
a
t
i
o
nB
e
t
w
e
e
nL
o
a
dL
e
v
e
lH
o
r
i
z
o
n
t
a
l
D
e
f
l
e
c
t
i
o
nY,
a
n
dL
o
a
dQ,f
o
r(
a
)P
i
l巴 P
2(b)P
i
l
e
A3
twol
i
m
i
t
i
n
gv
a
l
u
e
s
. Af
l
e
x
i
b
l
ep
i
l
eo
fd
e
p
t
hDcanbec
o
n
s
i
d
e
r
e
da
sane
q
u
i
v
a
l
e
n
tr
i
g
i
dp
i
l
e
e
uf
o
rt
h
ecomputationo
ft
h
ep
i
l
ec
a
p
a
c
i
t
yandt
h
emaximum
o
fu
l
t
i
m
a
t
ee
f
f
e
c
t
i
v
ed
e
p
t
hD
ef
o
r
b
e
n
d
i
n
gmomentwhereasi
tcanbet
r
e
a
t
e
da
sar
i
g
i
dp
i
l
eo
fe
l
a
s
t
i
ce
f
f
e
c
t
i
v
ed
e
p
t
hD
eu/DandDe/Da
r
emainly
t
h
ee
s
t
i
m
a
t
i
o
no
fd
e
f
l
e
c
t
i
o
n
su
n
d
e
rworkingl
o
a
d
s
. Ther
a
t
i
o
sD
a
l
u
ee
v
e
nthought
h
ev
a
r
i
a
t
i
o
no
fE
swithdepthhassomes
l
i
g
h
te
f
f
e
c
t
c
o
n
t
r
o
l
l
e
dbyt
h
eKrv
(
S
a
s
t
r
yandMeyerhof"
)
.I
nt
h
ea
b
s
e
n
c
eo
fs
t
r
u
c
t
u
r
a
lf
a
i
l
u
r
eo
ft
h
ep
i
l
e
.t
h
eu
l
t
i
m
a
t
e
nhomogeneoussandi
so
b
t
a
i
n
e
d
l
a
t
e
r
a
lc
a
p
a
c
i
t
yo
faf
l
e
x
i
b
l
ep
i
l
eo
fembedmentd
e
p
t
hDi
e
us
ot
h
a
t
byc
o
n
s
i
d
e
r
i
n
gt
h
ee
q
u
i
l
i
b
r
i
u
mo
fane
q
u
i
v
a
l
e
n
tr
i
g
i
dp
i
l
eo
fd
e
p
t
hD
[2] Qh=O.125yBD~u Kb
wherey=u
n
i
tw
e
i
g
h
to
ft
h
es
o
i
l,Kb=e
a
r
t
hp
r
e
s
s
u
r
ec
o
e
f
f
i
c
i
e
n
tf
o
rt
h
ep
i
l
e(Meyerhofe
t
.
7
)a
ndD
e
ui
sg
i
v
e
nby
aJ
[3] D
e
u/D=1.6
5K~・ 12 孟 l
Reasonablygoodagreementwass
e
e
nbetweent
h
ecomputedando
b
s
e
r
v
e
dv
a
l
u
e
so
fQh
(
F
i
g
.3
)
.
Bendingmoments
h
emagnitudeandl
o
c
a
t
i
o
no
ft
h
emaximumb
e
n
d
i
n
gmomenti
n
I
nt
h
ed
e
s
i
g
no
fp
i
l
e
s,t
t
h
ep
i
l
ep
l
a
yav
i
t
a
lr
o
l
e
.I
nt
h
ep
r
e
s
e
n
tc
a
s
e,t
h
eb
e
n
d
i
n
gmomenta
tgroundl
e
v
e
lu
n
d
e
r
f
a
i
l
u
r
el
o
a
dwasg
i
v
e
nbyMO=Qhhwherehi
st
h
ee
c
c
e
n
t
r
i
c
i
t
yabovet
h
egroundl
e
v
e
lwhere
t
h
el
o
a
dwasa
p
p
l
i
e
d
. Theb
e
n
d
i
n
gmomentwass
e
e
nt
oi
n
c
r
e
a
s
ep
a
r
a
b
o
l
i
c
a
l
l
yupt
oad
e
p
t
h
Dmwheret
h
emaximumb
e
n
d
i
n
gmomentMmwasr
e
c
o
r
d
e
d,andwass
e
e
nt
od
e
c
r
e
a
s
e
r
a
p
i
d
l
yw
i
t
hf
u
r
t
h
e
ri
n
c
r
e
a
s
ei
nd
e
p
t
h(
F
i
g
s
.4
(
a
)and4
(
b
)
)
. Thenond
i
m
e
n
s
i
o
n
a
ld
e
p
t
hr
a
t
i
o
6
2
B
u
ll
.F
a
cAg
,
.
rS
a
g
aU
n
i
v
.N
o
.78 (
l9
9
5
)
同
Dm/Dwass
e
e
nt
obeaf
u
n
c
t
i
o
no
fKrv
a
l
u
eandwasd
e
c
r
e
a
s
i
n
ga
sKrwasd
e
c
r
e
a
s
i
n
g
. The
Mmv
a
l
u
ecanbee
s
t
i
m
a
t
e
do
n
c
ea
g
a
i
nbyc
o
n
s
i
d
e
r
i
n
gt
h
ee
q
u
i
l
i
b
r
i
u
mo
fane
q
u
i
v
a
l
e
n
tr
i
g
i
d
p
i
l
eo
fd
e
p
t
hD
e
us
ot
h
a
tf
o
rh=O,
[4J Mm=
0
.
3
6QhD
e
u
R
e
a
s
o
n
a
b
l
eagreementwass
e
e
nbetweent
h
ecomputedando
b
s
e
r
v
e
dv
a
l
u
e
so
fMm
(
F
i
g
.5
)
.
Thee
l
a
s
t
i
cd
i
f
f
e
r
e
n
t
i
a
le
q
u
a
t
i
o
nf
o
rt
h
ei
n
f
i
n
i
t
e
l
yd
e
e
pf
l
e
x
i
b
l
ep
i
l
e(
K
r話 0
.
0
1
)s
u
b
j
e
c
t
edt
oal
a
t
e
r
a
ll
o
a
da
tah
e
i
g
h
thabovegroundl
e
v
ε
Ii
sg
i
v
e
nby
4
4
[5J Epl
d
yr
/dx
)
ェ o
abovet
h
egrounds
u
f
r
a
c
e,andby
p(
4
4
2
dY
2
/
d
x)=p= E
s
.y belowt
h
egrounds
u
r
f
a
c
e (Chang)wherepi
st
h
e
[6J Epl
p(
st
h
ew
e
i
g
h
t
e
da
v
e
r
a
g
es
e
c
a
n
tmodulusi
nd
e
p
t
hDand
n
e
tp
a
s
s
i
v
ep
r
e
s
s
u
r
eont
h
ep
i
l
e,Esi
Y
landy
2a
r
et
h
el
a
t
e
r
a
ld
e
f
l
e
c
t
i
o
n
so
ft
h
ep
i
l
eaboveandbelowt
h
egroundl
e
v
e
la
td
i
s
t
a
n
c
e
x
. Theabovee
q
u
a
t
i
o
n
scanbet
r
a
n
s
f
o
r
m
e
da
s
[7J d4
yr
/dx4
=O,
and
d4
Y
2
/
d
x4
s4y
,
i
nwhichβ=(Es/4Epl
I
/
4
.
十4
2=O
p)
h
ed
e
p
t
ho
f maximum b
e
n
d
i
n
g moment i
so
b
t
a
i
n
e
d from
S
o
l
v
i
n
gt
h
e
s
ee
q
u
a
t
i
o
n
s,t
(Koumotoe
ta
l
:
)
l
i
4
l
i
4
t
a
n
-1[
1
/
{
1+1
.4
1
4
(
h
/D)Kr
}
]
.
[9J Dm/D=1.414Kr
i
t
hh=O,
Dm
/D=0.
41
4whichi
sa
l
s
oo
b
t
a
i
n
ε
dby
1
nt
h
ec
a
s
eo
far
i
g
i
dp
i
l
ei
nc
l
a
y,w
nt
h
ec
a
s
eo
far
i
g
i
dp
i
l
ei
ns
a
n
dt
h
ee
q
u
i
l
i
b
r
i
u
m
c
o
n
s
i
d
e
r
i
n
gt
h
ee
q
u
i
l
i
b
r
i
u
mo
ft
h
ep
i
l
e I
49
8
.T
h
e
o
r
e
t
i
c
a
lv
a
l
u
e
so
fDm/De
s
t
i
m
a
t
e
dfrom[
9
Ja
g
r
e
e
d
c
o
n
s
i
d
e
r
a
t
i
o
n
sl
e
a
dt
oDm
/D=0.
r
e
a
s
o
n
a
b
l
yw
i
t
ht
h
eo
b
s
e
r
v
e
dv
a
l
u
e
s(
F
i
g
.6
)
.
D
i
splacem記n
t
s
faf
l
e
x
i
b
l
ep
i
l
eo
fd
e
p
t
h
Theh
o
r
i
z
o
n
t
a
lgroundl
i
n
ed
i
s
p
l
a
c
e
m
e
n
ty
oandr
o
t
a
t
i
o
n8
0 o
Du
n
d
e
raworkingl
a
t
e
r
a
ll
o
a
dQ(Q=Qh/3-Qh/2whereQhi
st
h
ep
i
l
ec
a
p
a
c
i
t
y
)a
c
t
i
n
gh
abovet
h
egrounds
u
r
f
a
c
ea
r
ee
s
t
i
m
a
t
e
dbyr
e
p
l
a
c
i
n
gt
h
ef
l
e
x
i
b
l
ep
i
l
ew
i
t
hane
q
u
i
v
a
l
e
n
t
l1
r
i
g
i
dp
i
l
eo
fe
f
f
e
c
t
i
v
ed
e
p
t
hDeg
i
v
e
nby(
S
a
s
t
r
yandMeyerhof )
[
1
0
J De
/D=2.3K~.2 孟 I
y
m.
[
1
1
J Y
o
=
{
Q
/
(
E
s
e
D
e
F
y
)
}
{
I
Y
h十 I
(
h
/De
)
}
)
}
{
I
e
h十 I
恥
(
h/De
)
}
[
1
2
J 仇={Q/(EsemFe
hh,
I
O
h,and1
r
e
whereEse=weighteda
v
e
r
a
g
eh
o
r
i
z
o
n
t
a
ls
o
i
lmodulusi
nd
e
p
t
hDe,
0m a
r
ey
i
e
l
dd
i
s
p
l
a
c
e
m
e
n
tandr
o
t
a
t
i
o
n
e
l
a
s
t
i
ci
n
f
l
u
e
n
c
ef
a
c
t
o
r
sf
o
rar
i
g
i
dp
i
l
e,FyandFea
e
s
p
e
c
t
i
v
e
l
yf
o
raf
l
e
x
i
b
l
ep
i
l
e,(
P
o
u
l
o
s& D
a
v
i
s9). C
o
n
s
i
d
e
r
i
n
ga
v
e
r
a
g
ec
o
n
s
t
a
n
t
f
a
c
t
o
r
s,r
hm=9and1
o
m
=1
2,
y
oand8
erec
o
m
p
u
t
e
d
. Thel
o
a
dl
e
v
e
lh
o
r
i
z
o
n
t
a
l
v
a
l
u
e
so
f
7
.
5,
0 w
p
p
r
o
x
i
m
a
t
e
l
yo
b
t
a
i
n
e
dfrom
d
i
s
p
l
a
c
e
m
e
n
tylwasa
a
n80 • h
[
1
3
J YI=YO十 t
r
e
T
h
i
se
q
u
i
v
a
l
e
n
tr
i
g
i
dp
i
l
emethodi
sr
e
f
e
r
r
e
dt
oa
smethod1andt
y
p
i
c
a
lv
a
l
u
e
so
fy1 a
p
r
e
s
e
n
t
e
di
nF
i
g
s
.7(
a
)and(
b
)
.y
oand8
a
l
u
e
sa
r
ea
l
s
oe
v
a
l
u
a
t
e
dbyc
o
n
s
i
d
e
r
i
n
g[
1
1
Jand
0v
[
1
2
J,r
e
s
p
e
c
t
i
v
e
l
yf
o
raf
l
e
x
i
b
l
ep
i
l
e,i
nwhichDei
sr
e
p
l
a
c
e
dbyDandt
h
ee
l
a
s
t
i
ci
n
f
l
u
e
n
c
e
a
l
u
e
sa
r
e
f
a
c
t
o
r
sa
p
p
r
o
p
r
i
a
t
et
ot
h
eKrv
a
l
u
ea
r
ea
d
o
p
t
e
d(
P
o
u
l
o
sandD
a
v
i
s9)‘ They1 v
t
h
e
no
b
t
a
i
n
e
dfrom[
1
3
Janda
r
ea
l
s
op
r
e
s
e
n
t
e
di
nF
i
g
s
.7
(
a
)and(b)‘ T
h
i
sa
p
p
r
o
a
c
hw
i
l
lbe
r
e
f
e
r
r
e
dt
oa
smethod2
.
‘
S
A
S
T
R
Y• KOl;'幻1'0・
l
'
v
I
A
K
O
P
P
O・S
U
"
!
A
M
P
O
U
W
:B
E
A
R
I
N
GC
A
P
A
C
l
TYANDD
E
F
L
E
C
T
I
O
NO
FL
A
T
E
R
A
L
L
Y凶必)
E
DF
L
E
X
I
B
L
EP
I
L
E
S 6
3
Ana
l
t
e
r
n
a
t
emethod(method3
)wasa
l
s
ou
s
e
dt
oc
a
l
c
u
l
a
t
eY
lv
a
l
u
e
sd
u
et
oaworking
momentM andl
o
a
dQa
c
t
i
n
ga
tah
e
i
g
h
thabovegroundl
e
v
e
lonaf
l
e
x
i
b
l
ep
i
l
eo
fd
e
p
t
h
D embeddedi
nas
o
i
lw
i
t
hau
n
i
f
o
r
ms
e
c
a
n
tmodulusEs (Chang2),
[
1
4
J Yl=[l/F y ][Q{(l 十 ßh)3十 O.5}/(3E p l p • s
3
)十 M(l十 sh
)
2
/(2E
β
2
)]
pl
p.
w
i
t
hsymbolsa
sb
e
f
o
r
e
. TheseY
lv
a
l
u
e
sa
r
ea
l
s
oshownf
o
rcomparisoni
nF
i
g
s
.7
(
a
)and
7
(
b
)
.
I
twass
e
e
nt
h
a
tt
h
eY
lv
a
l
u
e
se
s
t
i
m
a
t
e
dfrommethod1d
i
f
f
e
rbya
b
o
u
t土 5%compared
t
ot
h
o
s
ecomputeda
c
c
o
r
d
i
n
gt
omethod2andb
o
t
ht
h
e
s
emethodsp
r
o
v
i
d
eaf
a
i
re
s
t
i
m
a
t
i
o
n
lv
a
l
u
e
sandp
r
o
v
i
d
e
d
o
fh
o
r
i
z
o
n
t
a
ld
e
f
l
e
c
t
i
o
n
s
. Method3wass
e
e
nt
ou
n
d
e
r
e
s
t
i
m
a
t
et
h
eY
al
o
w
e
rbounds
o
l
u
t
i
o
n
.
CONCLUSIONS
A
n
a
l
y
s
i
so
fmeasurementso
ft
h
eu
l
t
i
m
a
t
el
o
a
d
s,b
e
n
d
i
n
gmomentsa
l
o
n
gt
h
ep
i
l
es
h
a
f
t
fs
i
n
g
l
ei
n
s
t
r
u
m
e
n
t
e
df
l
e
x
i
b
l
emodelp
i
l
e
s,b
u
r
i
e
di
nl
o
o
s
e
andl
o
a
dl
e
v
e
ld
i
s
p
l
a
c
e
m
e
n
t
s,o
u
b
j
e
c
t
e
dt
oh
o
r
i
z
o
n
t
a
ll
o
a
d
s,havel
e
dt
oab
e
t
t
e
ru
n
d
e
r
s
t
a
n
d
i
n
go
ft
h
ec
o
n
c
e
p
t
sand,ands
o
fe
f
f
e
c
t
i
v
ed
e
p
t
hf
o
rt
h
ed
e
s
i
g
no
ff
l
e
x
i
b
l
ep
i
l
e
si
nhomogeneouss
o
i
l
s
.
Methodshavebeens
u
g
g
e
s
t
e
df
o
ro
b
t
a
i
n
i
n
gt
h
eu
l
t
i
m
a
t
ec
a
p
a
c
i
t
yo
faf
l
e
x
i
b
l
ep
i
l
eo
f
d
e
p
t
hD i
ns
a
n
dands
u
b
j
e
c
t
e
dt
ol
a
t
e
r
a
ll
o
a
dby r
e
p
l
a
c
i
n
gt
h
ef
l
e
x
i
b
l
ep
i
l
ew
i
t
h an
h
er
a
t
i
oDeu/Db
e
i
n
gaf
u
n
c
t
i
o
no
ft
h
er
e
l
a
t
i
v
e
e
q
u
i
v
a
l
e
n
tr
i
g
i
dp
i
l
eo
fe
f
f
e
c
t
i
v
ed
e
p
t
hD
e
u,t
p
i
l
es
t
i
f
f
n
e
s
sK
r
.
Theb
e
n
d
i
n
gmomentv
a
r
i
a
t
i
o
nw
i
t
hd
e
p
t
hcana
l
s
ober
e
a
s
o
n
a
b
l
ye
s
t
i
m
a
t
e
dfromt
h
e
c
o
n
c
e
p
to
fe
q
u
i
v
a
l
e
n
tr
i
g
i
dp
i
l
es
u
b
j
e
c
t
e
dt
ot
h
e
o
r
e
t
i
c
a
ls
o
i
lp
r
e
s
s
u
r
ed
i
s
t
r
i
b
u
t
i
o
nont
h
ep
i
l
e
s
h
a
f
t
. Themagnitudeandp
o
s
i
t
i
o
no
fmaximumb
e
n
d
i
n
gmomentwerer
e
a
s
o
n
a
b
l
ye
s
t
i
matedfromt
h
ec
o
n
c
e
p
to
fe
q
u
i
v
a
l
e
n
tr
i
g
i
dp
i
l
e
. Theh
o
r
i
z
o
n
t
a
ld
i
s
p
l
a
c
e
m
e
n
to
ft
h
ep
i
l
e
headu
n
d
e
rworkingl
a
t
e
r
a
ll
o
a
dwasr
e
a
s
o
n
a
b
l
ye
s
i
m
a
t
e
dbyr
e
p
l
a
c
i
n
gi
tw
i
t
har
i
g
i
dp
i
l
e
o
fe
l
a
s
t
i
ce
f
f
e
c
t
i
v
ed
e
p
t
hDe,t
h
er
a
t
i
oDe/Db
e
i
n
go
n
c
ea
g
a
i
nd
e
p
e
n
d
e
n
tonKr,andu
s
i
n
g
t
h
ee
x
p
r
e
s
s
i
o
n
ss
u
g
g
e
s
t
e
de
a
r
l
i
e
rf
o
rar
i
g
i
dp
i
l
e
.
Although,t
h
ep
r
e
s
e
n
tl
i
m
i
t
e
dmodelp
i
l
et
e
s
t
sonl
a
t
e
r
a
l
l
yl
o
a
d
e
di
n
s
t
r
u
m
e
n
t
e
dp
i
l
e
s
ti
sf
e
l
tt
h
a
tc
o
n
s
i
d
e
r
a
b
l
ef
u
r
t
h
e
rt
e
s
t
i
n
go
fmodelp
i
l
e
so
f
s
u
p
p
o
r
tt
h
ep
r
o
p
o
s
e
dc
o
n
c
e
p
t
s,i
o
g
e
t
h
e
rw
i
t
hf
u
l
ls
c
a
l
ei
n
s
t
r
u
m
e
n
t
e
dp
i
l
et
e
s
t
s
w
i
d
e
rr
a
n
g
eo
fr
e
l
a
t
i
v
es
t
i
f
f
n
e
s
so
ft
h
ep
i
l
e,t
u
n
d
e
rl
a
t
e
r
a
ll
o
a
d
si
sv
e
r
ymuchn
e
e
d
e
dt
ov
e
r
i
f
yt
h
ep
r
o
p
o
s
e
dc
o
n
c
e
p
t
s
.
LEDGEMENTS
ACKNO羽T
Ther
e
s
e
a
r
c
ha
tt
h
eSagaU
n
i
v
e
r
s
i
t
ywasc
o
n
d
u
c
t
e
dp
a
r
t
l
yw
i
t
ht
h
ef
u
n
d
sp
r
o
v
i
d
e
dby
Ja
panS
c
i
e
n
c
eand
t
h
eNa
t
u
r
a
lS
c
i
e
n
c
eandE
n
g
i
n
e
e
r
i
n
gR
e
s
e
a
r
c
hC
o
u
n
c
i
lo
fCanada (
TechnologyFund),andS
a
i
n
tMaryU
n
i
v
e
r
s
i
t
y,H
a
l
i
f
a
x,C
a
n
a
d
a
.
REFERENCES
1
.B
r
i
n
c
hH
a
n
s
e
n,J
.1
9
61
.T
h
eu
l
t
i
m
a
t
er
e
s
i
s
t
a
n
c
eo
fr
i
g
i
dp
i
l
e
sa
g
a
i
n
s
tt
r
a
n
s
v
e
r
s
a
lf
o
r
c
巴S
.B
u
l
l
e
t
i
nN
o
.
1
2,
D
a
n
i
s
hG
e
o
t
e
c
h
n
i
c
a
lI
n
s
t
i
t
u
t
e,C
o
p
e
n
h
a
g
巴n
,D
e
n
m
a
r
k
6
4
B
u
ll
.F
a
c
.Ag
,
.
r S
agaU
n
i
v
.No.7
8(
1
9
9
5
)
.L
.1
9
3
7
.D
i
s
c
u
s
s
i
o
nont
h
ep
a
p
e
r“L
a
t
e
r
a
lP
i
l
eLoadingT
e
s
t
s
"byL
.B
.F
e
a
g
i
n,T
r
a
n
s
a
c
2. Chang,Y
.1
0
2,p
p
.2
7
2
2
7
8
.
t
i
o
n
s,ASCE,Vol
3. Koumoto,T
.andKaku,K.,1
9
8
8
. Ont
h巴 s
u
r
f
a
c
er
o
u
g
h
n
e
s
so
fac
o
n
ef
o
rs
a
n
d
. B
u
l
l
e
t
i
nNo
.65,
F
a
c
u
l
t
yo
fA
g
r
i
c
u
l
t
u
r
e,SagaU
n
i
v
e
r
s
i
t
y,p
p
.47-51
4. Koumoto,T
.,S
a
s
t
r
y,V
.
V
.
R
.
N
.,Sumampouw,]
.
E
.
R
.andManoppo,F
.
]
.1
9
9
4
.D
e
f
l
e
c
t
i
o
nB
e
h
a
v
i
o
ro
f
7F
a
c
u
l
t
yo
f
F
l
e
x
i
b
l
eP
i
l
e
si
nHomogεneousS
o
i
l
sS
u
b
j
e
c
t
e
dt
oH
o
r
i
z
o
n
t
a
lL
o
a
d
s
. B
u
l
l
e
t
i
nNo.7
n
i
v
e
r
s
i
t
y,p
p
.8
3
8
8
.
A
g
r
i
c
u
l
t
u
r
e,SagaU
5. Meyerhof,G
.
G
.,andS
a
s
t
r
y,V
.
V
.R
.N. 1
9
8
5
. B
e
a
r
i
n
gc
a
p
a
c
i
t
yo
fr
i
g
i
dp
i
l
e
su
n
d
e
re
c
c
e
n
t
r
i
cand
l2
2
:p
p
.267-276
i
n
c
l
i
n
e
dl
o
a
d
s
. CanadianG
e
o
t
e
c
h
n
i
c
a
lJ
o
u
r
n
a
l,Vo.
6. Meyerhof
,G
.
G
.andS
a
s
t
r
y,VV
.R
.N.1
9
8
7
.F
u
l
ld
i
s
p
l
a
c
e
m
e
n
tp
r
e
s
s
u
r
e
m
e
t
e
rmethodf
o
rr
i
g
i
dp
i
l
e
s
巴c
h
n
i
c
a
lJ
o
u
r
n
a
l,Vol
.2
4
:p
p
.471-478
u
n
d
e
rl
a
t
e
r
a
ll
o
a
d
sandmoments. CanadianGeot
7. Meyerhof
,G
.
G
.,Mathur,S
.K
.
, a
ndValsangkar,A.
J
.1
9
81
.L
a
t
巴r
a
lr
e
s
i
s
t
a
n
c
eandd
e
f
l
e
c
t
i
o
no
fr
i
g
i
d
nl
a
y
e
r
e
ds
o
i
l
s
. CanadianG
e
o
t
e
c
h
n
i
c
a
lJ
o
u
r
n
a
l,Vo.
l1
8
:p
p
.1
5
9
1
7
0
.
w
a
l
l
sandp
i
l日si
8. M巴y巴r
h
o
f,G
.
G
.andS
a
s
t
r
y,V
.
V
.R
.N.,andY
a
l
c
i
n,A
.
S
.,1
9
8
8
. L
a
t
e
r
a
lr
e
s
i
s
t
a
n
c
eandd
e
f
l
e
c
t
i
o
no
f
125・ p
p
.511-522
f
l
e
x
i
b
l
ep
i
l
e
s
. CanadianG
e
o
t
e
c
h
n
i
c
a
lJ
o
u
r
n
a
l,V0.
9. P
o
u
l
o
s,H
.
G
.,andD
a
v
i
s,E
.
H
.,1
9
8
0
.P
i
l
ef
o
u
n
d
a
t
i
o
na
n
a
l
y
s
i
sandd
e
s
i
g
n
. JohnWiley& Sons,New
Y
o
r
k
.
1
0
.S
a
s
t
r
y,V
.
V
.R
.N.andMeyerhof,G
.
G
.,1
9
9
0
.B
e
h
a
v
i
o
ro
ff
l
e
x
i
b
l
ep
i
l
e
su
n
d
e
ri
n
c
l
i
n
e
dl
o
a
d
s
. Canadian
.2
7
:p
p
.1
9
2
8
.
G
e
o
t
e
c
h
n
i
c
a
lJ
o
u
r
n
a
l,Vol
1
1
.S
a
s
t
r
y,V
.
V
.
R
.
N
. and Meyerhof,G
.
G
.,1
9
9
4
. B
e
h
a
v
i
o
ro
ff
1e
x
i
b
l
ep
i
l巴si
nl
a
y
e
r
e
ds
a
n
d
su
n
d
e
r
巴c
c
e
n
t
r
i
candi
n
c
l
i
n
e
dl
o
a
d
s
. CanadianG
e
o
t
e
c
h
n
i
c
a
lJ
o
u
r
n
a
l,Vol
.3
1
:p
p
.513-520
1
2
.T
e
r
z
a
g
h
i,K.1
9
4
3
.T
h
e
o
r
e
t
i
c
a
ls
o
i
lm
e
c
h
a
n
i
c
s
. JohnWiley& Sons,NewYork,N.Y
1
3
.Y
a
l
c
i
n,A
.
S
.,andMeyerhof,G
.
G
.1
9
91
.B
e
a
r
i
n
gc
a
p
a
c
i
t
yo
ff
l
e
x
i
b
l
ep
i
l
e
su
n
d
e
re
c
c
e
n
t
r
i
candi
n
c
l
i
n
e
d
,l Vo
l
.2
8
:p
p
.909-917
l
o
a
d
si
nl
a
y
e
r
e
ds
o
i
l
s
. CanadianG
ε
o
t
e
c
h
n
i
c
a
lJ
o
u
r
n
a
司
SASTRY• KOUMOTO・
MANOPPO・
SUMAMPOUW:B
E
A
R
I
N
GC
A
P
A
C
I
T
YANDD
E
F
L
E
C
T
I
O
NO
FL
A
T
E
R
A
L
L
YL
O
A
D
E
DF
L
E
X
lB
L
EP
I
L
E
S
6
5
横方向蒋重下におけるたわみ性杭の
支持カおよび変形
パンカマミディ [email protected]@
ファピアン1.マノッポ・ヨゼフ E
.R.スマンボー
(生産環境工学講座)
王
子
成 8年 1
1月1
8日 受理
摘 要
傾斜荷重を受けるたわみ性杭の設計に際しては,杭の横方向支持力および水平変位特性を知
r
(= EpI
EsD4,ただし,
ることが重要である.たわみ性杭の鉛直支持力は,杭の相対離性 K
p/
p:杭のたわみ闘性, D 杭の根入れ深さ, Es:深さ Dにおげる土の王子均水平方向弾性係数)
E
p
l
の大きさには無関係であるが,横方向支持力は K
rが減少するにつれて小さくなる.
r三
五0
.
1の場合杭は剛性杭とみなされ,水平荷重下ではこの杭は杭中央部のある点を
一般に, K
中心に回転する.これに対してヲ K
r三
五0
.
0
1の場合杭はたわみ性杭とみなされ,水平荷重下では
rが上述の両限界値の中間にある場合は,杭は水平荷重下
この杭は杭中央部で曲げ変形する.K
において両杭の中間の挙動を示す.
これまで,杭の弾性変形状態および極限支持力状態における杭の有効根入れ深さの概念を導
入してヲたわみ性および翻性雨杭の間の関係を求める試みを行っており,かなりの成果を得て
いる.
本論文は,ゆるい砂地盤に設置したたわみ性モデル杭の水平荷重下における支持力および変
形特性を実験的に明らかにするとともに,提案した概念の適用性を検討したものである.