D

ú{à®wï æ 66 ª æ 6 †(2002)569_575
ÁWu‚ø¦pü¨­dv‰“gɨ¯é‚·ÏHÞ¿ÌJ­Æ«]¿Zpv
MªðKX»nZv‰“gɨ¯éöCßMíÇÞ¿Ì
‚·…H“®ÌðÍ
¬ ì ¸ ¢1
î t r a1
ü ] ² Ž1
Ø à p m2
1Oä¢D”®ïЫGl‹M[ZpJ­Z“^[
2Oä¢D”®ïЫ–Æ{”«Ýv”
J. Japan Inst. Metals, Vol. 66, No. 6 (2002), pp. 569_575
Special Issue on Development and Application of High_temperature Corrosion_resistant Materials and
Evaluation Technologies of Corrosion Environment in High Efficiency Waste Incineration Plant
Ý 2002 The Japan Institute of Metals
Analysis of High Temperature Corrosion Behavior of Superheater Tube Materials in Waste
Pyrolysis Gasification and Melting Plant
Shozo Ono1, Toshikazu Inaba1, Takahiro Irie1 and Hidehiro Kiuchi2
1Chiba
Technology Center, Mitsui Engineering & Shipbuilding Co., Ltd., Ichihara 290_
0067
2Environmental
& Nuclear Energy System Hq., Engineering Dept., Mitsui Engineering & Shipbuilding Co., Ltd., Tokyo 134_
0088
The demand for the highly efficient utilization of the heat generated by waste pyrolysis gasification and melting process is in­
creasing. However, since this process is still under development, the corrosion behavior and characteristics of superheater tubes
are not fully understood. Some field corrosion tests were carried out at the model plant to determine the corrosion rate and to
clarify the corrosion mechanism of superheater tubes. Thickness losses after practical operation up to 2839 h were measured
along with characterization of ashes deposited on the surface of the tubes. It was found that the corrosion loss of SUS310S in­
creased markedly as the metal temperature rise above 500‹
C. Cl, S, Na, K and Ca were detected in the corrosion scale, and the
deposit begins to melt at 504‹
C. These results indicate that the accelerated corrosion above 500‹
C is caused by melting of alkaline
metal chlorides and sulfates in the deposit. Also, it was confirmed that alloying elements of Cr and Ni affect to reduce high tem­
perature corrosion caused by molten salt.
(Received November 20, 2001; Accepted May 9, 2002)
Keywords: waste pyrolysis gasification and melting plant, boiler, superheater tube, high temperature corrosion, alkaline metal chloride,
alkaline metal sulfate, molten salt
C‰ðMªðKX»nZvZX̂f‹v‰“gÉÝuµC
1.

¾
500‹
C ̂·öCñû̽ßÌÞ¿]¿ðÚIƵ½ÀØ^
]ðÀ{µ½D»Ì‹ÊC±êÜžç©É³êĢȩÁ
Ÿ¢ã^̇Ipü¨ˆZpƵÄCMªðKX»n
ZvZX1)ÌJ­ªiñŨèC±ÌVµ¢vZXðÌ
½{vZXɨ¯éeóâ޿̅HÊC¨æÑFàÌÂ
«…H«ÉÖ·éf[^ðæ¾·é±ÆªÅ«½D
pµ½pü¨ˆ{ÝÍ»ÝenÅ}¬ÉÌp³ê éD{vZXÍC©ÈMnZC_CILV“Þ­¶Ì}
»±Å{ñÅÍCSH Ç̂·…H“®ÈçÑɅHÂ
«]¿ðåÌƵ½ãLÀ؎±Ì¬ÊðÐî·éD
§C‚¢¸e»¦CL¿¨ñûC™Ì˜_ðLµÄ¨èCÂ
«‰×ªá­‘¹zÂ^ÐïÉKžµÄ¢éDæÁÄC{v
ZXɨ¢Ä‚ø¦Èpü¨­dªÀ»Å«êÎC䪑
ÌGl‹M[«Á«ãÉßÄ]ܵ¢Æl¦çêéD
±Ìæ¤ÈÏ_©çCNEDO(VGl‹M[EYÆZp
2.
À
2.1
±
û
@
Ž±ppM{C‰ÌTv
úÊ 24 t Ìpü¨ˆ\ÍðL·é‚f‹v‰“gÉÝ
‡J­@\)ÅÍMªðKX»nZvZXɨ¯é­dø
uµ½Ž±ppM{C‰ÌfÊ}ð Fig. 1 ɦ·DRÄn
¦ 30÷̂ø¦³öQ^pü¨­dðÚwµCevfZp
ZF(HTCC)©ço½rKXÍC‚·óCÁMí(HTAH)
J­ð 1998 Nx©ç 3 NÔÉí½èsÁÄ«½2)D{C‰
Åpü¨MªðÌM¹ÆÈ邷óCðñûµ½ãCñ
öCðÌ‚·‚³»És‡ÈßMí(SH)Ç޿̂·
650‹
C ÅpM{C‰ÉüéDÎü¬Ìe|‹G“h^Cn“
…HÁ«]¿Í»ÌêÂƵÄißçêCMÒçÌO‹[v
}Š“ODœŽû®ðÌpµ½Ž±ppM{C‰ÅÍCFig.
ÅÍ{vZXÌÀÊDðp¢CÀ±ºŽ±Éæéù¶Þ¿
2 Ŧ·æ¤É 2 Ÿ SH Å 400‹
C, 3 Ÿ SH Å 500‹
C ̂·ß
ÌÏH«]¿ÈçÑÉD̅HÁ«]¿ðsÁ½3)D³çÉ
MöCªñû³êéDMð·ðI¦½rKXÍCpM{C‰
±Ì‹Êðó¯ÄCù¶Þ¿Ì SH Ç©çÈ鎱ppM{
C ÆÈéD
oûÅñ 450‹
570
æ
ú { à ® w ï (2002)
Fig. 1
66
ª
Sectional view of boiler.
Table 1 Chemical composition and operation time of SH tubes
and probes adopted.
Material
Principal alloy
composition
(mass÷)
Operation
time (h)
Alloy 625
21Cr_8.4Mo_
3.5Nb_62Ni_
3.8Fe
2839
SUS310S
25Cr_
20Ni_53Fe
SUS310S
25Cr_20Ni_53Fe
SUS309J2
22Cr_1.5Mo_
14Ni_
59Fe
STBA24
2.1Cr_
0.97Mo_
96Fe
Primary SH
C)
(510`460‹
STB340
99Fe
Outlet of HTAH
Alloy 625
21Cr_8.4Mo_
3.5Nb_62Ni_3.8Fe
Alloy 825
22Cr_2.8Mo_
1.8Cu_44Ni_
27Fe
Position
Final SH
C)
(650`620‹
SH
tubes
Secondary SH
C)
(620`510‹
Inlet of final SH
SUS310S
25Cr_
20Ni_53Fe
SUS309J2
22Cr_
1.5Mo_
14Ni_59Fe
Inlet of secondary
SH
STBA24
2.1Cr_0.97Mo_
96Fe
Inlet of primary
SH
STB340
99Fe
Proba
Fig. 2
2.2
Example of gas, metal, and steam temperature at SH.
Ž±Þ¿ÌØf²¸
Note: (
1614, 1225
2839
2433
)`gas temperature
C ÌÌæÉÝuµCt…DÌÁ«]¿Éà
xªñ 500`700‹
p¢½DSH ÇC¨æÑóâv[uÍ»ê¼ê 2839 hC¨
Table 1 Ɏ±Þ¿ÆµÄp¢½|Þ é¢Í Ni î‡à
æÑ 2433 h ^]ãɲǵC¸÷ÊÌvªC…HEÊÌX
Ìåv‡àg¬CÝuӊC¨æÑ^]žÔð¦·DŽ±Þ
P[‹ªÍC¨æÑ~NgD̲¸ðsÁ½D½¾µC3
¿Ìς·…H«²¸ÍCÀÛÌ SH Ç̼Éóâ®Ì…H
Ÿ SH ÇÌ SUS310S Íí¸©ÈjEÌ­©Éæèð·µ½
Ž±Ì(v[u)ðp¢ÄsÁ½Dóâv[uÍrKX·
½ßC^]žÔª¼Ì”ÊæèZ¢D¸÷ÊÌvªÍC^
6
æ
†
571
MªðKX»nZv‰“gɨ¯éöCßMíÇ޿̂·…H“®ÌðÍ
‹·xªè”tßðڋÏ@µCšÊÌÅàƒµ¢ÓŠðØ
CuC¨æÑA‹JŠà®Æ¢Á½áZ_»‡¨ð`¬·é
èoµC3 mm Ì_C„‚“hy[XgÉæéfÊ̾ʤ
³fÌÜLʪärI½¢DêûCÇ¿çÌt…Dà»wg
¨æÑGb`“Oˆð{µ½ãCfW^‹°÷¾ðp¢
¬ÅÍá ClC‚ S ðÆÈÁĨèCXRD ɨ¯é NaCl,
Äc¶ú³vªðsÁ½DT“v‹ 1 ŸÌɨ¯éc¶ú
KClC¨æÑ CaSO4 Ìs[Nª­¢D
, 90‹
, 180‹
, 270‹
³vª”ÊÍCrKX¬êÉε 0‹
Ìè_
Fig. 3 ɱêç 2 ÂÌÌæDÌ DSC Éæéªè‹Êð¦
4 ӊÉÁ¦CÅå¸÷”ð¹¹½‡v 5 ӊƵ½D…H
·D±Ì‹ÊÉæêÎC3 Ÿ¨æÑ 2 Ÿ SH Çt…DÌnZ
EÊÌXP[‹ªÍÉÍC3 Ÿ¨æÑ 2 Ÿ SH Ç̂·”
C ¨æÑ 501‹
C Å Á½DKCl_
Jn·xÍC»ê¼ê 504‹
(öCoû”)ð£®ÅØèoµCXP[‹¢œŽÌÜÜ÷‰
C Å NaCl_Na2SO4 Ì 3 ³n¤»–ÌnZJn·xª 518‹
ÅÅèµC”1000 ÜÅÌGŠ[†¤ð£®Å{µ½ãC
é6) ±ÆCTable 3 ɦ·æ¤É XRD Å KCl, NaClC¨æ
EPMA ðp¢ÄsÁ½D~NgD̲¸ÍC¯lÉ÷‰
Ñ Na2SO4 ª¯è³êé±Æ©çCDSC şo³ê½s[
ÅÅèµ½T“v‹ð 3 mm Ì_C„‚“hy[XgÉľ
N†ÉÍãL 3 ³n¤»–ÌnZs[NªÜÜêéàÌÆ
ʤµCGb`“Oˆð{µ½ãCõw°÷¾ÉæéÏ
CÉ
l¦çêéD½¾µCªè³ê½nZJn·xÍ 518‹
@ðsÁ½D
2.3
t…DÌÁ«²¸
SH ÇÌåv”Æev[uÉt…µ½DðF^]ãÉÌ
Table 3 Chemical composition of ashes deposited on SH tubes
and phase identified by XRD (mass÷).
æµCICP @C´qzõõ[email protected]Éæé»wg¬Ì²¸C
Na
XRD Éæéåv\¬»‡¨Ì¯èC¨æÑ DSC Éæén
Final SH
Secondary SH
5.10
5.54
ZÁ«Ì]¿ðsÁ½D
K
Ca
12.4
3.
Si
11.4
‹Ê¨æÑl@
3.1
Al
^]ðÆrKX«ó
1999 N 6 Ž©ç 2000 N 11 ŽÌúÔÉC‚f‹v‰“g
ňµ½êÊpü¨Ì²Ý¿ªÍ‹ÊC¨æÑpM{C‰
ɨ¯érKXg¬Ìªè‹Êã\lð Table 2 ɦ·D²
ûCrKXg¬É¢ÄÍ O2 Zxª]ˆ^ÄpF4,5)Ìñ¼
ªÌ 5÷öxÆÈÁÄ¢éD±êÍC{vZXÌÁ¥Å éáóCä^]ÉNö·é·éàÌÅ éD
t…DÌ«ó
SH ÇÌDt…ÊÍCÅར 3 Ÿ SH Åà 15 mm öx
6.24
XRD
6.90
12.6
9.72
5.82
Pb
0.84
1.59
Zn
1.04
0.86
Cu
0.21
0.20
Cl
2.81
3.79
S
Ý¿É¢ÄÍêÊIÈss²ÝÆå«­ÍÏíçÈ¢Dê
3.2
6.20
9.1
12.2
Chloride
KClÞ
NaClÞ
KCl*
NaClÞ
Sulfate
CaSO4Þ
Na2SO4
CaSO4Þ
Na2SO4
Oxide
Ca2Al2SiO7
Ca(Mg, Fe)Si2O6
Ca2Al2SiO7
Ca(Mg, Fe)Si2O6
Note: Þ`strong peak
Ìú³Å èCrKX·xÌáºÉº¢¸­·éXüªFß
çê½DܽC3 Ÿ SH Ìt…DÍSÌIÉd­XP[‹É
ŅµÄ¢éÌÉεC2 Ÿ¨æÑ 1 Ÿ SH Ìt…DͲ–
óÅîç©¢DTable 3 É 3 Ÿ¨æÑ 2 Ÿ SH Çüût…D
Ì»wg¬¨æÑ XRD ůè³ê½åv\¬»‡¨ð¦·D
3 Ÿ SH Ç t … D É ä × C 2 Ÿ SH Ç t … D Í Cl, S, Pb,
Table 2
Waste
Condition
Gas
composition
in boiler
Waste condition and gas composition in boiler.
Lower calorific value
9.43(MJ/kg)
Moisture
43.3(mass÷)
Combustible
45.3(mass÷)
Ash
11.5(mass÷)
Cl
0.6(mass÷)
O2
4.0`5.1(vol÷)
CO2
11.0`14.2(vol÷)
H 2O
17.2`24.6(vol÷)
HClÞ
322(vol ppm)
Note: Þ`measured at No. 1 bagfilter inlet
Fig. 3
DSC curves of ashes deposited on SH tubes.
572
ú { à ® w ï (2002)
æ
66
ª
ä×ᢱƩçCãL 3 ³n¤»ÈOÌ»‡¨Ìe¿ª
¯ÎC»êÈOÍrKX·xÌã¸Éº¢¸­·éD±êç
¦´³êéD]ˆ^ÄpFÅÌÌæDàC{‹Ê¯lÉ
ÌXüÍ]ˆ^ÄpF4,5)ÆޗµÄ¢éD
500‹
C
OãÉnZJn_ðÂꇪ½¢ª7)C±êÍêÊ
IÉÍd஖ÌZ_áºøÊÆl¦çêÄ¢éD
Fig. 4 ÍCSH Çåv”¨æÑev[uÅÌt…D† S,
Fig. 5 ÍCSH Çåv”¨æÑev[uÅÌt…D† Cl
ÜLÊðCrKXƁ^‹Ì·x·Å®µ½‹Êð¦·D
C ̂·ÌæÅÍCrKXƁ^‹Ì
rKX·x 600`700‹
Ca, Na, K, SiC¨æÑ Al ÜLÊðCrKX·xÅ®µ½
·x·ªã¸·éÉÂêCCl ÜLÊªí¸©ÉÁ·éX
‹Êð¦·DrKX·xÌã¸Éº¢CCa, SiC¨æÑ Al
üªFßçêéD±ÌXüÍ]ˆ^ÄpF5)ƯlÅ éD
ÜLÊ͝Á·éDêûCNaC¨æÑ K ÜLÊ͸­·
C Ìá·ÌæÅÍCrKXƁ
êûCrKX·x 450`500‹
éDܽCS ÜLÊÉ¢ÄÍ 3 Ÿ SH üû¨æÑ 2 Ÿ SH
^‹Ì·x·Æ̾mÈ˶«ÍFßçê¸C‚·ÌæÉä
üût…DÌ 2 vbgªáOIɂ­ÈÁÄ¢é_ðœ
×SÌIÉ Cl ÜLʪ‚¢Xü𦵽D]ˆ^ÄpF4,5)
ÅÍrKX·xÌáºÉº¢ Cl ÜLÊàặéXüÅ èC{n̓®ÆͯlÅÈ¢D
3.3
3.3.1
Ž±Þ¿ÌØf²¸
¸÷Ê̪è
{Ž±É¨¢ÄÍCeŽ±Þ¿÷úÌožÏ»ðÇÕ²¸
µÄ¢È¢½ß…H¸÷̬x¥Ís¾Å éªC]ˆ^Ä
pFɨ¯é SH Ç÷úÌÇÕ²¸‹Ê4)ÅÍC…H¬xw
”ªú¨ü¥Æü`¥ÌÔð¦µÄ¢é±Æªñ³êÄ¢
éD»±ÅCú¨ü¥C¨æÑü`¥ÌoûÉæèeŽ±Þ
¿ÌÅå…H¬xè”ðZoµ½D»Ìlð^‹·xÉæ
C
ÁÄ®µ½‹Êð Fig. 6 ɦ·D^‹·x 300`450‹
ÌÌæǺ^‹·xÉηé…H¬xè”̝Áª¬³
¢DܽCSTB340 Æ STBA24 Æ̾mÈÏH«·ªFß
Fig. 4 Gas temperature dependency of S, Ca, K, Na, Al and Si
concentration in deposits.
Fig. 5 Temperature difference (Tg_Tm ) dependency of Cl
concentration in deposits.
Fig. 6 Effect of metal temperature on maximum corrosion
rate constant of SH tubes and probes.
æ
6
†
MªðKX»nZv‰“gɨ¯éöCßMíÇ޿̂·…H“®ÌðÍ
573
C ÈãÌÌæÅÍC
ç ê È ¢ D ê û C  ^ ‹ · x 450 ‹
C ð´¦
Éå«­ÈÁÄ¢éD±êÍ SH Çt…Dªñ 500‹
SUS310S Ìvbgð©éÆí©éæ¤ÉC^‹·xÉ
éÆnZµnßé±ÆÉNö·éàÌÆl¦çêéDæÁ
C tßð«
ηé…H¬xè”̝ÁªC^‹·x 500‹
ÄC±Ì·xÌæð´¦È¢±Æª‚·…HÌ}§ÉdvÅ
éÆl¦çêéDܽCAlloy 625 Ìvbgð©éÆí
C 𴦽ƫ̅H¬x
©éæ¤ÉC^‹·xª 500‹
è ” Ì  Á X ü ª SUS310S É ä × ˜ µ ­ ¬ ³ ¢ D Alloy
625 Í SUS310S É ä × Cr ÜL Ê ª ᢠ± Æ ðl ¶ · é
ÆC±Ì·xÌæɨ¯é޿̂ Ni »ªLøÅ éÆl
¦çêéD
CC¨æÑ 550‹
C ÅÌ[Ni{Cr]ÜLʝÁ
^‹·x 450‹
Éæé¸÷ÊÌáºXüð Fig. 7 ɦ·D]ˆ^ÄpFÅ
C ¨æÑ 450‹
C ɨ¢ÄÍ
Ìñ7) ÅÍC^‹·x 550‹
Mo YÁªLøÉìpµCÁɁ^‹·x 550‹
C Å͇à†
Ì[Ni{Cr{Mo]ÜLÊ̝ÁÉæé…H}§øʪ嫢
Æ µ Ä ¢ é D ê û Å { n Ì ê ‡ C Mo Ü L Þ ¿ Å é
SUS309J2 ̅HÊÍCSUS310S ̅HÊÉäתèӊ
ÉæéÎ竪嫭C³çÉCÅå¸÷ÊÌݪ˜µ­
å«­ÈÁÄ¢é±Æª Fig. 7 Åí©éDܽC]ˆ^Ä
C ɨ¯é¸÷Ê̇à†[Ni{Cr{Mo]ÜL
pFÅÍ 450‹
C ɨ¢Äà
Ê˶«ª¬³¢7) ÌÉεC{nÅÍ 450‹
Mo ÜLÞ¿Å é STBA24 ̸÷ʪ嫢½ßÉC‡
Fig. 7 Effect of [Cr{Ni] content on corrosion thickness loss­
es of materials.
Fig. 8
à†[Ni{Cr]ÜLÊ˶«ªå«­\êÄ¢éD±Ì_©
çÍCMo YÁªLøÉìp·éÆ;¢ï¢ªC{nÅÍ
Ž±ÉŸµ½ Mo ÜLÞ¿ª­È¢±Æà èCMo YÁø
Microstructures of final and secondary SH tubes after 1225 h or 2839 h exposure.
574
ú { à ® w ï (2002)
ÊÉ¢Äl@·éÉÍ¡ãf[^ðâ·Kvª éD
3.3.2
æ
66
ª
~NgD
ȨCAlloy825 Í SUS310S æèà[Ni{Cr]ÜLʪ‚
Fig. 8 É 3 Ÿ¨æÑ 2 Ÿ SH ‚·”(öCoû)Ågp³ê
¢Éà©©íç¸CFig. 6 ɦ³êéæ¤É…H¬x蔪
½ Alloy 625, SUS310SC¨æÑ SUS309J2 ̅HEÊɨ
SUS310S æèå«¢‹ÊÆÈÁÄ¢éD»Ì´öÍC‡à
¯ é õ w ° ÷ ¾ g D á ð ¦ · D 3 Ÿ SH Å Í Alloy 625,
C ÈãÌnZ
†Ì Cu ÉRˆ·é Cu{ ªC^‹·x 500‹
SUS310S ÆàC” 10 mm öxÌשȚÊÆ 100 mm öx
–`¬Â«ºÉ¨¢Ä­ÍÈ_»ÜÉÈé8)½ßƄè³ê
̱E…HªFßçêéDêûC2 Ÿ SH ÅÍ SUS310S,
éD
SUS309J2 Æ à ± E … H Í F ß ç ê È © Á ½ D ½ ¾ µ C
Fig. 9 Secondary electron and characteristic X_ray images at
cross_
sectional surface zone of SUS310S in final SH tube after
1225 h exposure.
Fig. 10 Secondary electron and characteristic X_
ray images
at cross_
sectional surface zone of SUS310S in secondary SH
tube after 2839 h exposure.
æ
6
†
MªðKX»nZv‰“gɨ¯éöCßMíÇ޿̂·…H“®ÌðÍ
575
SUS309J2 ÅÍ SUS310S Éä×ǔIȚʪ嫭C[
·…H«CÈçÑÉFàÌ«…H«ð²¸µ½D¾çê½
³ 300 mm öxÌå«È­ÚÝàFßçê½D
‹ÊÍȺÌæ¤Évñ³êéD
3.3.3
…HEÊÌ EPMA ªÍ
Fig. 9 Æ Fig. 10 É»ê¼ê 3 ŸC2 Ÿ SH ‚·”(öCo
û)Ågp³ê½ SUS310S ̅HEÊɨ¯é 2 Ÿdq
P
ò
«Ìá¢ÆµÄC_fZxC¨æÑt…D† Cl ÜLÊÌr
KX·x˶«ª©o³ê½D
œCÈçÑÉ EPMA ªÍ‹Êð¦·D
3 Ÿ SH ÇÅÍ Cr ÌZkµ½A±wª…HXP[‹†É
MªðKX»nZvZXÆ]ˆ^ÄpFÆÌFàÂ
Q
ò
SUS310S ̅H¬xè”́^‹·x˶«ÍC
500‹
C tßð«Éå«­ÈéD±êÍC{nɨ¯é SH Ç
¶ÝµÈ¢±Æ©çCCr2O3 Ûì猪`¬³êÉ­¢Â«
t…D†ÉÜÜêéA‹JŠ–»¨|A‹JŠ°_–̤»
Å éÆl¦çêéDܽC…HEÊɨ¯é Cl, S, O ¨
C ÅnZµnßé±ÆÉNö·éàÌÆl¦ç
–ªñ 500‹
æÑ Na, K, CaCdà®Þ̶ÝÍC…HXP[‹†ÌÝÈ
êéD
縱ENH”ÉàFßçêC»Ì[³ÍO\Ê©çñ 20
R
ò
MªðKX»nZFÅÍC]ˆ^ÄpF¯lÉÞ¿Ì
mm ÜÅÌärINH̝ªå«¢ÌæÜÅBµÄ¢éD{
‚ NiC‚ Cr »ª…H}§ÉøÊIÅ éD½¾µCMo Y
C Ít…DÌnZJn·x
T“v‹Ì½Ï^‹·x 521‹
ÁøÊC]ˆ^ÄpFÆÌ«…H«·É¢ÄÍC{¤†
504‹
C ð´¦Ä¨èC±êç…HXP[‹†ÉŸo³êéD
Å;yÅ«éiKɊç¸C¡ã³çÈéÀ@f[^ÌÌ
¬ªÍnZ–ð`¬µÄ¢½àÌÆl¦çêéDæÁÄCn
æªKvÅ éD
Z–…HÌ­¶àl¦çêC¸÷Ê̝åÉñ^µ½àÌÆ
l¦çêéDêûCNH̝ª¬³­Èé[¢Ìæɨ¢Ä
{¤†Ìê”ÍVGl‹M[EYÆZpJ­@\(NEDO)
Í Na, K, CaCâdà®ÞÍmFÅ«¸CDRˆ¬ªÍ Cl,
©çÌÏõ–Æupü¨KX»nZ­dZpJ­vÌêÂÆ
S, O Ìݪ¶Ý·é`ÔÅ Á½DÂÜèC±E…Hæ[
µÄÀ{µ½àÌÅ éD±±É´ÓÌÓð\µÜ·D
”ÉD¬ªÍNüµÄ¢È¢Æl¦çêC]ˆ^ÄpFÅñ
¥³êÄ¢é Cl/S/O ÌÖ^·é¡‡KX…H9)ªN«Ä¢
¶
£
½àÌƄ@³êéD
2 Ÿ SH ÇÅÍCCr2O3 Ì`¬ÉNö·éÆl¦çêé Cr
ÌZkµ½A±wª…HXP[‹†ÉFßçêé±Æ©çC
3 Ÿ SH ÉäׅH«ª}C‹hÅ Á½Æ¾¦éD½¾
µC±ÌA±wÍXP[‹/‡àEÊɧ…µÄ¨ç¸CFe
n_»¨à¬ÝµÄ¢é±Æ©çCÛ쫪‚©Á½Æ;
¢ï¢D–ÀCCl, S, O ¨æÑ Na, K, CaCdà®ÞÌNü
ÍXP[‹/à®EÊÉÜÅBµÄ¢éD{T“v‹Ì½Ï
C ÍCt…DÌnZJn·x 501‹
C æèá
^‹·x 446‹
¢±Æ©çnZ–…HÍN±è¾È¢DæÁÄCOqÌ¡‡
KX…HÌÝÉæè¸÷ªisµ½àÌÆl¦çêéD
4.
‹
¾
MªðKX»nZvZX̂f‹v‰“gɎ±ppM
{C‰ðÝuµCñ 3000 h Éí½è SH pÏHÞ¿Ìς
1) S. Fujita, K. Yanase, Y. Harada and H. Fujio: Mitsui Engineering
& Shipbuilding Technical Review 172(2001) 6_12.
2) K. Ogawa: Proceedings of 1st Seminar on Development of High
Efficiency Waste_
to_
Energy Plant, (NEDO, IAE, 2001) pp. 75_
89.
3) S. Ono, K. Izumiya, T. Irie and H. Kiuchi: Proceedings of the In­
ternational Symposium on High_Temperature Corrosion and Pro­
tection 2000, held in Hokkaido, pp. 287_
290.
4) Y. Kawahara, N. Orita, K. Takahashi and Y. Nakagawa: Tetsu_
to_
Hagane 87(2001) 24_
31.
5) M. Noguchi, H. Yakuwa, M. Miyasaka, M. Yokono, A.
Matsumoto, K. Miyoshi, K. Kosaka and Y. Fukuda: Materials
and Corrosion 51(2000) 774_
785.
6) E. K. Akopov and A. G. Bergman: Zhur. Neorg. Khim. 4[7]
(1959) 1655_1662.
7) Y. Kawahara, M. Nakamura, T. Tsuboi and K. Yukawa: Corro­
sion 54(1998) 576_589.
8) K. Matsumoto, Y. Matsunaga and K. Nakagawa: Zairyo_
to_
Kankyo 46(1997) 16_23.
9) Y. Kawahara: Proceedings of JIM Symposium (2001) pp. 34_38.