TMT - Subaru Telescope

2011.01 すばる望遠鏡 将来装置計画 WS
TMTの観測装置開発
Project Overview
TMT FL instruments
Japanese instruments
柏川伸成
(NAOJ/TMT project)
Jan. 2011
Overview
TMT Fast Facts
30m aperture
Filled segmented primary
Active and adaptive optics
0.31-28um
CalTech, UC, Canada
+Japan, China, India, …
Total construction cost: 130B yen (JPN1/4)
Hawaii, Mauna-Kea
Three First Light instruments+AO
2019 FL
vs. Subaru
x13 sensitivity, x4 resolution
sensitivity ∝ D 2
Why we want larger telescope?
resolution ∝ λ D
To see more distant objects
To see more detailed structure
To see in shorter time
To see more objects
Adaptive Optics(AO)
HST
TMT
Angular resolution
0.6→0.015arcsec
(2.2µm)
sensitivity upgrades
by 1order
Several thousand
elements
Much higher
resolution than HST
5 times higher
resolution than JWST
Almost all the TMT
NIR observation will
use AO in TMT.
High spatial resolution w/TMT/AO
AO on TMT provides unprecedented ability to investigate
objects on small scales. Essentially no images exist on
these scales for direct comparison.
0.01” @5 AU = 36 km
5 pc = 0.05 AU
100 pc = 1 AU
1 kpc = 10 AU
8.5 kpc = 85 AU
1 Mpc = 0.05 pc
20 Mpc = 1 pc
z=0.5 = 0.07 kpc
z=1.0 = 0.09 kpc
z=2.5 = 0.09 kpc
z=5.0 = 0.07 kpc
(Jovian’s and moons)
(Nearby stars – companions)
(Nearest star forming regions)
(Typical Galactic Objects)
(Galactic Center or Bulge)
(Nearest galaxies)
(Virgo Cluster)
(galaxies at solar formation epoch)
(disk evolution, drop in SFR)
(QSO epoch, Hα in K band)
(protogalaxies, QSOs, reionization)
Keck AO image
of Titan with an
overlayed 0.05’’
grid (~300 km)
High-z galaxy image
superimposed on a
TMT IFU with 50100pc spatial
resolution
6
Keck AO image of M31 Bulge with 0.1” grid
vs. JWST
JWSTの勝ち
TMTの勝ち
TMT advantages
High spatial resolution 0.015arcsec
→ more detailed structure
High spectral resolution R~100,000
→ more accurate physical measurements
High sensitivity in optical (0.3-1um) over wide FOV(>10’)
Short response times for ToO
Flexible and upgradable
8
Synergy w/Space-IR and ALMA
SPICA
SPICA
MIR域でJWSTより2ケタ程度高い波長分解能
MIR域でSPICAより1ケタ高い空間分解能
NIR域でALMAとほぼ同じ空間分解能
Nasmyth Configuration: First Decade
Instrument Suite
Platform 7 m below elevation axis
Articulated M3 – facilitates quick instrument change
Addressable regions: -28° to 6° and 174° to 208° for small FOV
IRIS
MOBIE
IRMS
TMT.PMO.PRE.08.002.REL01
10
TMT Early Light Instrument Suite
Instrument
Near-IR DL Spectrometer
& Imager
Spec.Res.
≤4000
(IRIS)
Wide-field Optical
Spectrometer
Assembly of galaxies at large redshift
Black holes/AGN/Galactic Center
Resolved stellar populations in crowded fields
300 - 5000
IGM structure and composition 2<z<6
High-quality spectra of z>1.5 galaxies suitable for measuring
stellar pops, chemistry, energetics
2000 - 10000
Near-IR spectroscopic diagnostics of the faintest objects
JWST followup
(MOBIE)
Multi-slit near-DL near-IR
Spectrometer
Science Case
(IRMS)
Mid-IR Echelle
Spectrometer & Imager
(MIRES)
5000 100000
Physical structure and kinematics of protostellar envelopes
Physical diagnostics of circumstellar/protoplanetary disks: where
and when planets form during the accretion phase
ExAO I
(PFI)
50 - 300
Direct detection and spectroscopic characterization of extra-solar
planets
High Resolution Optical
Spectrograph
(HROS)
30000 50000
Stellar abundance studies throughout the Local Group
ISM abundances/kinematics, IGM characterization to z~6
Extra-solar planets!
MCAO imager
(WIRC)
5 - 100
Galactic center astrometry
Stellar populations to 10Mpc
Near-IR, DL Echelle
(NIRES)
Precision radial velocities of M-stars and detection of low-mass
TMT.INS.PRE.08.009.REL01
11
5000 - 30000 planets
IGM characterizations for z>5.5
TMT Instrument Lineup Summary
First Light Instruments (FL前後までに必ず製作する。建設費から予算がつく)
IRIS
----- Keck/OSIRISの後継
WFOS ----- Keck/DEIMOSの後継
IRMS ----- Keck/MOSFIREそのまま
(以下はFL以降順次立ち上げられていくいわゆる2nd gen.装置。予算は運営費から。)
First Decade Instruments (06年時にTMT装置候補として検討されたもの)
(NIRES) → J-NIRESとmerge
(MIRES) → J-MIRESとmergeしてMICHI
IRMOS
HROS
PFI
WIRC
…
J-TMT Instruments
(J-NIRES) ----- Subaru/IRCSの後継
MICHI
----- Subaru/COMICSの後継
(J-IRMOS) ----- Subaru/MOIRCSの後継
(J-HROS) ----- Subaru/HDSの後継
12
FL instrumentation
IRIS
Infrared imaging spectrometer
0.8 - 2.5μm
R<4000
Lenslet IFU
– 128x128pix
– 4 plate scales( 4-50mas)
Image slicer
– 90 slices w/25 and 50mas
FOV
– < 2” IFU
– DL imaging 17” w/4mas
Imager: designed by Japan
PI: James Larkin (UCLA)
– Co-I: Anna Moore (Caltech), PS: Betsy
Barton (UCI), Others: UCS ,
Japan,U.Tolonto
14
MOBIE
Optical MOS Spectrograph
0.31 - 1.1 μm
~140 multiplicity over 9.6’
R=300-8000
5 order Echellette
Full wavelength coverage
Low resolution mode for max.
multiplex advantage.
PI: Rebecca Bernstein (UCSC)
– PM: Bruce Bigelow (UCSC),PS:
Chuck Steidel (Caltech)
15
IRMS
Infrared multislit spectrometer
0.8 - 2.5 μm
2.3 arcmin FOV
0.06arcsec sampling
46 slits
plate scale: 60 mas
R=4600 over entire Y, J, H
and K bands
Clone of
Keck/MOSFIRE
Step 0 towards
IRMOS
16
J-TMT instrumentation
日本における活動: 装置開発
日本のTMT装置開発2本の柱
第一期観測装置の開発・製作に日本から参加
IRIS: 装置デザインとサイエンスの検討
MOBIE/IRMS: 装置・サイエンスグループへの加入を検討中
第二期観測装置を日本主導で開発・製作・供給
可視高分散分光器(青木ほか)
中間赤外低分散分光器 (岡本ほか)
近赤外高分散分光器 (小林ほか)
近赤外多天体分光器 w/IFU+MOAO (秋山ほか)
系外惑星直接撮像装置(松尾ほか)
HDS
COMICS
IRCS
MOIRCS
IRD
18
Subaru instruments
TMT用観測装置検討会
日本における活動: 装置開発
第2期装置開発スケジュール(TBD 予算獲得状況による):
2008 May: TMT-J 装置提案募集(4装置の応募)
2008-2011 :各提案の具体化とR&D。装置検討会
http://jelt.mtk.nao.ac.jp/tmtinst/
TMTのCfPに対していくつかの概念設計をTMTへ提案
2012-2014: TMT Design Review process
2020-: コミッショニング、テスト開発開始
20
NIR High Dispersion Spectrograph
R=40,000 (80,000max)
Short arm (0.9-2.5um) [& long arm (1.9-5.5um) ]
Slit: 0.”02 x 0.5-1” (option: long slit ~30”, MOS?)
J~20, H~20, K~19.5 (10σ) R~50,000, 1hr
Key sciences
IGM at 2.5<z<6(metallicity), and z>6(reionization)
Atmosphere of exoplanets
collaborations with UH NIRES team (Rayner/Tokunaga)
Prototype WINERED and IRCS-HDU
ZnSe immersion grating
Molecular gas cell, Laser comb.
…
21
Mid-IR Imager & Spectrometer(MICHI)
Imaging & Spectroscopy in N- and Q- bands, FOV=30”-1’
[email protected], [email protected] w MIR AO
R=100-100,000 @7.5-13.5um & 16-25um
Options: IFU, polarimetry
Key sciences
Dynamics and chemistry of PP disk
High-R spec. for bio-markers
collaborations w/ UH & Florida MIRES
(Tokunaga/Packham)
R&Ds
Image slicer
Internal cold chopper
…
team
22
Wide field NIR IFU spectrograph
NIR IFU spectroscopy of 10-20 objects simultaneously (cf. IRMOS)
FOV 5arcmin w/MOAO, spatial resolution [email protected]
20 IFU units, R=1,000-20,000
Key sciences
Search for galaxies in formation-phase at 7<z
Physical properties of galaxies in growing-phase at 2<z<7
collaborations w/ MOAO team of U.Victoria, HIA
R&Ds
large stroke MEMS-DM
tomography algorithm
Fiber IFU
…
23
Optical High Dispersion Spectrograph
They used to study an “all-purpose” spectrograph (e.g.
HIRES/Keck, HDS/Subaru), but now they turned to investigate an
“ultimate” spectrograph focusing on the accuracy and stability (e.g.
CODEX, ESPRESSO)
Key sciences
Detection of terrestrial exoplanets around solar-type stars
Direct measurement of cosmic expansion
Required accuracy of radial velocity ~10cm/s (e.g. 1m/s accuracy
is attained with ESO/HARPS )
AIs (experiments with 1.8m telescope and Subaru)
Stabilities of inst. Temperature, air pressure, opt. alignment
Laser comb.
…
24
Second-Earth Imager for TMT (SEIT)
Contrast requirements:10-8 @0”.01, 10-9 @0”.03
Inner working area: 0”.01 (2l/D at 0.08µm)
Pupil densified coronagraph(瞳関数変換レンズコロナグラフ)+
High-contrast visible imaging by pupil remapping (可視高コントラ
スト撮像装置)
0.8-1.2μm
FOV 0.”1
Key science: Direct detection of earth-like exoplanets
Requires ExAO
25
TMT第2期観測装置候補
第2期観測装置をどう実現していくか具体的方針については
未決定であるが、これまでの経緯を踏まえると将来的に海外
の装置検討と競争しなければならない。
そのためにも今から十分競争力のある検討・要素開発をする
必要がある。
First Decade Instruments (06年時にFLI同様TMT装置候補
として検討されたもの。)
(NIRES) → J-NIRESとmerge
(MIRES) → J-MIRESとmergeしてMICHI
J-IRMOS vs. IRMOS (Caltech, U.Florida)
J-HROS vs. HROS (UC Santa Cruz, U.Colorado)
J-PFI vs. PFI
WIRC
…
天文台と大学が連携して実現へ。
26
Summary
30m TMTの特徴を活かした高空間・高分散観測。
3つの第1世代観測装置は既に決定。
第1・2期観測装置の開発・製作に日本から参加
日本独自のサイエンスケースは?
みなさまのご支援お願いいたします。
現時点での装置サマリー
http://optik2.mtk.nao.ac.jp/~kashik/tmt/inst_summary_07262010.pdf
http://optik2.mtk.nao.ac.jp/~kashik/tmt/TMTinst_NK_07262010.pdf